
Statistical-Based Approaches for Non-Segmenting Languages

Virach Sornlertlamvanich
Thai Computational Linguistics Laboratory, NICT

112 Phahon Yothin Road, Klong Nueng, Kong Luang,
Pathumthani 12120, Thailand

Email: virach@tcllab.org

Abstract

We have been studying several approaches to
cope with the exceptional features in non-segmenting
languages. When there is no explicit information
about the boundary of a word, parsing an input text
is a formidable task. Not only the contemporary word
list, but also the word usages have to be maintained
to cover the use in current texts. The accuracy and
efficiency in higher processing do heavily rely on the
word identification process. In this paper, we
introduce some statistical based approaches to tackle
the problem due to the ambiguity in word
segmentation. The word identification problem is
then defined as a part of other for performing the
unified language processing in total. To exhibit the
ability in conducting the unified language processing,
we selectively study the tasks of language
identification, word extraction, dictionary-less search
engine and term-based ontology alignment.

Key Words: non-segmenting language, unified
language processing, statistical approach, probability,
language identification, word extraction, search
engine, ontology alignment

1. Introduction

Disambiguation is our major concern in natural
language processing. Though the morphological and
syntactic information play an important role in
assisting the disambiguation process, degree of the
allowing information can vary according to the type
of the language. For instance, a space character
between words reduces the task in identifying word
boundary. Similarly, the grammatical markers,
inflection and punctuation marks are quite
meaningful information for identifying the role of
each word and structural relations between words in a
sentence. Consequently, it is natural to say that many
approaches in language processing have been studied
in terms of word units. A word unit is definitively a
unit of language that native speakers can identify.
Based on the classical approaches, without knowing
the entity of word, it is not so efficient to develop the
language model. For the language that does not allow
to use a space character (or any special markers) to
separate words in natural text, so-called a non-
segmenting language, i.e. Thai, Chinese, Japanese,
Korean, etc., a high performance word segmentation
algorithm to identify word boundary is crucial. The

performance of language processing totally relies on
the efficiency and the accuracy of the word
segmentation algorithm.

In our recent research, we proposed a language
interpretation model to deal with an input text as a
byte sequence rather than a sequence of words. It is
an approach to unify the language processing model
to cope with the ambiguities in word determination
problem. The approach takes an input text in the
earliest stage of language processing when the
exhaustive recognition of total word identity is not
necessary.

In this paper, we present the achievements in
identifying language based on the study of 20
different languages, word candidates extraction based
on the unified input byte sequence, indexing
algorithm for full text retrieval applied in a search
engine, and term based ontology alignment. Our
experiments also show promising results for
overcoming the drawbacks of the non-segmenting
language.

2. Language Identification

Language identification is yet another challenging
task when it is going to be conducted without any
grammatical knowledge. Byte sequence is the only
magic key in our approach to determine the language
of the input text. We introduce string kernel for this
language identification task. We conducted
experiments using 2 kernelized versions of centroid-
based method and support vector machine (SVM).
The accuracies of identification are acceptable for
both methods. The accuracies reach 95 percent with
only 10 training sets (2 KB per set). It is also found
that the simple centroid-based classifier is
comparable to the SVM classifier based on the string
kernel.
 String kernel is introduced to compute the
common subsequences of two strings. A kernel can
be simply thought of as the inner product function
between two vectors, K(x, y) = 〈Φ(x), Φ(y)〉. With the
recent advance in kernel methods, the kernel
computation is not just limited to vectorial objects,
but can be performed on sequences based on the so-
called string kernels [2][13].

To describe how to compute the string kernel
based on our proposed efficient method of using fast
matching with suffix trees, we consider two strings of
u = yzxxz and v = xyzxxxy, where the range of
considering substring length (r) is 1 ≤ r ≤ 2 and the

set of characters (Σ) is Σ={x,y,z}. Figure 1
demonstrates the suffix tree for the string v =
xyzxxxy.

Figure 1: Suffix tree for the string v = xyzxxxy$ Figure 3: Classification accuracy on Multi8-1

 The following table lists all the matched between
u and v, where the number of all occurrences of
substrings in common is given in parentheses.

u v[i] Score
y y(2), yz(1) 2⋅λ2⋅1 + 1⋅λ2⋅2 = 2λ2 + λ4
z z(1), zx(1) 1⋅λ2⋅1 + 1⋅λ2⋅2 = λ2 + λ4
x x(4), xx(2) 4⋅λ2⋅1 + 2⋅λ2⋅2 = 4λ2 + 2λ4
x x(4), xz(0) 4⋅λ2⋅1 = 4λ2
z z(1) 1⋅λ2⋅1 = λ2

As a result, we can compute the string kernels
with the computational complexity of O(c|u|+|v|).

We conducted experiments on 4 groups of
languages i.e. Multi4 (Thai, Chinese, Japanese,
Korean), Multi8-1 (English, French, Italian,
Portuguese, Spanish, Swedish, German, Hungarian),
Multi8-2 (Czech, Polish, Croatian, Slovak, Slovenian,
Bulgarian, Russian, Greek) and Multi20 (all the 20
languages). The results are shown in Figure 1-5.

Figure 4: Classification accuracy on Multi8-2

 Figure 2: Classification accuracy on Multi4 Figure 5: Classification accuracy on Multi20

In total, comparing to centroid-based method,
SVM classifier yields slightly better performance
when given more training samples, while the
centroid-based classifier performs better for small
numbers of training samples.

)()(
)()(
zpxp

zxpzxLm
y

yy =

)()(
)()(
zpxp

zxpzxRm
y

yy =
We hypothesize that, for the SVM classifier, only

the critical support vectors are retained after the
training process, whereas the centroid-based
classifier can exploit the feature combination of the
representative centroid that is the mean vector of all
training samples. However, both had shown
significant results in identifying languages of
whatever groups of the languages.

where
 x is the leftmost character of xyz

y is the middle substring of xyz
z is the rightmost character of xyz
p() is the probability function.
If xyz is a word, both Lm(xyz) and Rm(xyz) should

be high. On the contrary, if xyz is a non-word string
but consists of words and characters, either of its left
or right mutual information or both must be low. For
example, ‘กปรากฏ’ (‘ก’ (a Thai alphabet) + ‘ปรากฏ’ (The
word means ‘to appear’ in Thai.)) must have low left
mutual information.

3. Word Extraction

It is always arguable about what should be an
appropriate word list for a non-segmenting language.
There is no any explicit rule for explaining what a
word looks like. Semantically defining that word is a
unit of language that native speakers can identify is
still vague. It mostly depends on individual’s
perception about word i.e. ‘bookstore’ vs. ‘book
store’, ‘open source’ vs. ‘opensource’, ‘newspaper’
vs. ‘news paper’, etc..

(ii) Left Entropy and Right Entropy
Entropy [6] is the information measuring disorder

of variables. The left and right entropy is exploited as
another two attributes in our word extraction. Left
entropy (Le), and right entropy (Re) of string y are
defined as:

∑
∈∀

⋅−=
A

yyyyy
x

xplogxpLe)|()|()(2 A preliminary study of co-occurrence of substring
has shown a promising result in extracting open
compounds from text corpora [11]. The significant
change in occurring frequency of a substring when
expanded has invoked the possible observation of
word boundary. We proposed another method for
automatic word extraction from raw texts based on
the algorithm that reflected the understanding of
word being a string frequently used in most part of
the texts [12]. We employed the C4.5 decision tree
induction program [5] as the learning algorithm for
word extraction. The induction algorithm proceeds by
evaluating content of a series of attributes and
iteratively building a tree from the attribute values
with the leaves of the decision tree being the value of
the goal attribute. At each step of learning procedure,
the evolving tree is branched on the attribute that
partitions the data items with the highest information
gain. Branches will be added until all items in the
training set are classified. To reduce the effect of
overfitting, C4.5 prunes the constructed entire
decision tree. It recursively examines each subtree to
determine whether replacing it with a leaf or branch
would reduce expected error rate. This pruning
makes the decision tree better in dealing with the data
different from the training data.

∑
∈∀

⋅−=
A

yyyyy
z

zplogzpRe)|()|()(2

where
y is the considered string,
A is the set of all alphabets
x, z is any alphabets in A.
If y is a word, the alphabets that come before and

after y should have varieties or high entropy. If y is
not a complete word, either of its left or right
entropy, or both must be low. For example, ‘ปราก’ is
not a word but a substring of word ‘ปรากฏ’ (appear).
Thus the choices of the right adjacent alphabets to
‘ปราก’ must be few and the right entropy of ‘ปราก’,
when the right adjacent alphabet is ‘ฏ’, must be low.

(iii) Frequency
It is obvious that the iterative occurrences of

words must be higher than those of non-word strings.
String frequency is also useful information for our
task. Because the string frequency depends on the
size of corpus, we normalize the count of occurrences
by dividing by the size of corpus and multiplying by
the average value of Thai word length:

Avl
Sc

NF .)()(ss = We treat the word extraction problem as the
problem of word or non-word string disambiguation.
The next step is to identify the attributes that are able
to disambiguate word strings from non-word strings.
The attributes used for the learning algorithm are as
follows.

where
s is the considered string
N(s) is the number of the occurrences of s in

corpus
Sc is the size of corpus (i) Left Mutual Information and Right Mutual

Information Avl is the average Thai word length.
We employed the frequency value as another

attribute for the c4.5 learning algorithm. The left mutual information (Lm), and right
mutual information (Rm) of string xyz are defined as: (iv) Length

To measure the accuracy of the algorithm, we
consider two statistical values: precision and recall.
As shown in Table 1 and 2, the precision of our
algorithm is 87.3% for the training set and 84.1% for
the test set. The recall of extraction is 56% in both
training and test sets. We compare the recall of our
word extraction with the recall from using the Thai
Royal Institute dictionary (RID). The recall from our
approach and from using RID are comparable and
our approach should outperform the existing
dictionary for larger corpora. Both precision and
recall from training and test sets are quite close. This
indicates that the created decision tree is robust for
unseen data. Table 3 also shows that more than 30%
of the extracted words are not found in RID. These
would be the new entries for the dictionary.

Short strings are more likely to happen by chance
than long strings. Then, short and long strings should
be treated differently in the disambiguation process.
Therefore, string length is also used as an attribute
for this task.

(v) Functional Words
Functional words such as ‘จะ’ (will) and ‘ก็’ (then)

are frequently used in Thai texts. These functional
words are used often enough to mislead the
occurrences of string patterns. To filter out these
noisy patterns from word extraction process, discrete
attribute Func(s):

Func(s) = 1 if string s contains functional words,
 = 0 if otherwise,

is applied.
(vi) First Two and Last Two Characters

 A very useful process for our disambiguation is to
check whether the considered string complies with
Thai spelling rules or not. We employ the words in
the Thai Royal Institute dictionary as spelling
examples for the first and last two characters. Then
we define attributes and for this task as follows.

Table 1: The precision of word extraction
 No. of strings

extracted by the
decision tree

No. of
words

extracted

No. of non-
word strings

extracted
Training

Set
1882

(100%)
1643

(87.3%)
239

(12.7%)
Test Set 1815

(100%)
1526

(84.1%)
289

(15.9%)
ND

ssNFc *)()(21=s

Table 2: The recall of word extraction
ND

ssN
Lc nn)(*

)(1−=s No. of words
that in 30,000

strings
extracted

No. of words
extracted by
the decision

tree

No. of words
in corpus that

are found
RID

Training
Set

2933
(100%)

1643
(56.0%)

1833
(62.5%)

Test Set 2720
(100%)

1526
(56.1%)

1580
(58.1%)

where
s is the considered string and s = nn ssss 121 ... −

*)(21ssN is the number of words in the

dictionary that begin with 21ss
)(* 1 nn ssN − is the number of words in the Table 3: Words extracted by the decision tree and

RID dictionary that end with nn ss 1−
 No. of words

extracted by
the decision

tree

No. of words
extracted by
the decision
tree which is

in RID

No. of words
extracted by
the decision
tree which is
not in RID

Training
Set

1643
(100.0%)

1082
(65.9%)

561
(34.1%)

Test Set 1526
(100.1%)

1046
(68.5%)

480
(31.5%)

ND is the number of words in the dictionary.
We apply [14]’s algorithm to extract all strings

from a plain and unlabelled 1-MB corpus which
consists of 75 articles from various fields. For
practical and reasonable purpose, we select only the 2
to 30 character strings that occur more than 2 times,
have positive right and left entropy, and conform to
simple Thai spelling rules. To this step, we get about
30,000 strings. These strings are manually tagged as
words or non-word strings. The strings’ statistics
explained above are calculated for each string. Then
the strings’ attributes and tags are used as the training
example for the learning algorithm. The decision tree
is then constructed from the training data.

The attributes of such the character-based mutual

information and entropy provide significant
information to C4.5 algorithm for selecting
appropriate candidates for words. The approach
greatly supports the process of nominating word
candidates for developing a dictionary, and later is
extended to fulfill a dictionary-less search engine
[10]. The search engine has introduced a word score
as a heuristic value to determine the word likelihood
of a string. The word score is a normalized value of a
mutual information value. The minimum score of the
left and right hand side of a string in question is
assigned as the word score of the string. Based on the
proposed approach, we successfully implemented a
multi-lingual search engine with minimum
modification.

In order to test the decision tree, another plain 1-
MB corpus (the test corpus), which consists of 72
articles from various fields, is employed. All strings
in the test corpus are extracted and filtered out by the
same process as used in the training set. After the
filtering process, we get about 30,000 strings to be
tested. These 30,000 strings are manually tagged in
order that the precision and recall of the decision tree
can be evaluated.

4. Dictionary-less Search Engine
The performance of dictionary-based search

engines is directly affected by the accuracy of word
segmentation algorithms. Our previous work [10]
discussed about two possible errors affected by the
accuracy of dictionary-based word segmentation
modules. Assuming that a dictionary contains 6
words: a, b, c, ac, bc and cb.

Case 1: Incorrect word segmentation
The content of the document A is abcbcb. By
using a word segmentation module, the content is
separated into a|bc|bc|b. Assuming that the correct
segmentation is a|b|cb|cb. If the query is cb, it
cannot be found in the document A or if the query
is bc, the document A will be incorrectly returned.

Case 2: Unregistered word problem
The content of document A is abcdac. By using
the word segmentation module, the content is
separated into a|bc|d|ac. Assuming that the correct
segmentation is a|b|cd|ac and cd is an unregistered
word to the word segmentation. If the query is bc,
the result from this document will be incorrect or
if the query is cd, it cannot be found in the
document A.

Figure 6: Dictionary-less Search Engine

Figure 7: Dictionary-based Search Engine

The architecture of our dictionary-less search

engine is illustrated in Figure 6 comparing to the
typical dictionary-based search engine in Figure 7. It

is composed of 3 major modules: (1) data indexing,
(2) searching and (3) document ranking.

(1) Data Indexing
In typical search engines, web documents are

separated into words to provide a word list for
generating the indexes. In our approach, the data is
considered to be the sequence of characters and
indexed character by character. We adopt the
enhanced suffix array [14] for indexing the data. All
suffixes of the data string are indexed. Thus, the
number of indexes is equal to the data size. The
advantage of this indexing method is that it
guarantees all search strings to be found, whereas the
word indexing method depends on the word
segmentation. This indexing method can also be
applied to other languages since it does not require
any dictionary and language-specific knowledge.

Based on the enhance suffix array, it requires
O(mlogN) to access the string in the data, where m is
a length of the search string and N is the number of
indexes. The use of the suffix array guarantees that
all search strings will be found. However, only the
meaningful strings are preferred. If the found pattern
is a part of other word, that pattern is inseparable. As
a result, it is not valid as a meaningful word.

For example, assuming that the search query is
short and likely to be a part of other strings such as
“ยา” (drug), two strings are found i.e. (1) “กินยา” (take
a drug) and (2) “พัทยา” (Pattaya, name of a district in
Thailand). The first string can be separated into two
words: (1) “กิน” (take, eat) and (2) “ยา” (drug). Thus,
the word “ยา” in the first string is a meaningful word.
For the second string, the first part “พัท” is a
meaningless string and is strongly connected to the
second part “ยา”. Thus, the word “ยา” in the second
string is meaningless since this string is inseparable.

From the example, the validity of a word can be
decided from its surrounding context. If the word is
strongly connected to other word and inseparable, it
is likely to be a meaningless string. In contrast, the
word is likely to be a meaningful string if it is loosely
connected to other word and separable.

We use mutual information (MI) [1] to measure
the degree of the co-occurrence of the query and its
context. Let xy be a query, ab is the left context and
cd is the right context of the string xy, the mutual
information can be determined by the Equation 1-4.

)()(
)()(
xypabp

abxypabxyMI L = (1)

)()(
)()(

xyCountabCount
abxyCountabxyMI L ≈ (2)

)()(
)()(

cdpxyp
xycdpxycdMI R = (3)

)()(
)()(

cdCountxyCount
xycdCountxycdMI R ≈ (4)

If the MI value is high, xy is likely to be a part of
the context. On the other hand, xy should be

independent from the context if the MI value is low.
We define the inverse of MI as the word score. The
word score is calculated by the Equation 5-6.

wscoreL(xy|ab) = 1 − norm(MIL(abxy)) (5)
wscoreR(xy|cd) = 1 − norm(MIR(xycd)) (6)
The norm(⋅) is the normalizing function which

normalizes the argument from 0 to 1. At this point,
the word score determines the probability of being a
word of the string.

(3) Document Ranking
The word score from the previous step is not only

used to determine the word boundary, it is also used
to rank the document. That is, the document with
higher word score will attain high rank.

We conduct an experiment in order to compare
the dictionary-less search engine with the dictionary-
based search engine. The experiment is based on the
article [3]. We assign 20 queries to 5 volunteers. For
each query, the volunteer is shown the top 10 results
from each system. Then, each volunteer will choose
the documents that are relevant to the query. Each
result is considered to be relevant if at least 3 of the 5
volunteers assigned it as relevant for the query.
Finally, the satisfaction score of both systems will be
calculated for each query. We define the satisfaction
score as the ratio of the relevant results to all
available results.

The web documents used in the experiment can
be divided into two groups. The first group is
obtained from websites of newspapers, consisting of
5,853 documents (approximately 65 Mb). The second
group contains general articles, not related to news.
The second group consists of 7,710 documents
(approximately 35 Mb).

The test queries are listed in Table 4. The queries
are related to news. Thus, only results from the first
group are preferred. The satisfaction score of two
systems for each query is presented in Figure 8. From
the figure, the mean of the dictionary-less search
engine is higher than that of the dictionary-based
approach. Furthermore, there are 10 queries that the
dictionary-less approach is better than the dictionary-
based approach, while the results of 5 queries are
equal and the dictionary-based approach achieves
higher results on other 5 queries.

We observe that the dictionary-based search
engine faces difficult situation when the query is
excessively segmented, and the segmented words are
likely to be general terms. For example, one of the
queries is “การสงออก” (export). The word segmentation
module separates this word as “การ | สง | ออก”. All three
terms still have some meaning in Thai, but not
directly relevant to the compound word. Moreover,
these terms are general words and often parts of
several words. Thus, the dictionary-based approach
tends to return irrelevant documents, but have several
locations of these general terms.

Another observation is that the incorrect
segmentation does not always affect the search
performance of the dictionary-based search engine.

For example, a part of one query is“ผลกระทบ”
(effect). It is incorrectly segmented into “ผลก | ระ | ทบ”.
All three terms are meaningless and not general
terms. However, the dictionary-based search engine
still effectively discovers these terms since some of
this terms are quite unique. We also observe that the
correctness of word segmentation is less important
than the generality of segmented words. When the
query is excessively segmented, the dictionary-based
search engine still performs well if the segmented
terms are not quite general. In contrast, the
dictionary-based search engine tends to return
irrelevant documents if the query is excessively
segmented and the segmented words are general
terms. This also explains why the dictionary-based
search engine performs better on some queries.
Although those queries are sometime incorrectly
segmented, the dictionary-based search engine still
finds related documents. The reason is that the
segmented words are not general. Thus, these words
are easily found.

Table 4: Queries
 Unsegmented queries Segmented queries
1 บริจาค, สึนามิ บริจาค, สึนามิ
2 เสนตาย, ซัดดม เสนตาย, ซัดดม
3 มนัส, โชวตัว, จีน มนัส, โชว|ตัว, จีน
4 ผลกระทบ, ราคาน้ํามันแพง ผลก|ระ|ทบ, ราคา|น้ํามัน|แพง
5 ไขหวัดนก ไขหวัด|นก
6 ทุจริต, การเลือกตั้ง ทุจริต, การ|เลือกตั้ง
7 จับกุม, ผูกอการราย, ภาคใต จับกุม, ผูกอการราย, ภาค|ใต
8 นโยบาย, แกไข, ปญหายาเสพติด นโยบาย, แกไข, ปญหา|ยา|เสพติด
9 ทดลอง, ลดคาทางดวน ทดลอง, ลด|คา|ทางดวน
10 ซ้ือคืน, สัมปทาน, รถไฟฟา ซ้ือ|คืน, สัมปทาน, รถไฟฟา
11 ลงทุน, ในพมา ลงทุน, ใน|พมา
12 สงเสริม, การทองเที่ยว, ไทย สงเสริม, การ|ทองเที่ยว, ไทย
13 เลือกตั้ง, ประธานาธิบดี, ปาเลสไตน เลือกตั้ง, ประธานาธิบดี, ปา|เลสไตน
14 เลือกตั้ง, ผูวา, กทม. เลือกตั้ง, ผู|วา, กทม|.
15 สินคาไทย, การสงออก สินคา|ไทย, การ|สง|ออก
16 แปรรูปรัฐวิสาหกิจ แปรรูป|รัฐวิสาหกิจ
17 อุม, นายสมชาย อุม, นาย|สม|ชาย
18 ฉลองปใหม ฉลอง|ป|ใหม
19 พรทิพย, ลาออก พร|ทิพย, ลา|ออก
20 สวนสนุก สวน|สนุก

5. Term-Based Ontology Alignment

The shortage of language resources is potentially
preventing our research in statistical based approach.
A large enough corpus is necessary to capture the
language model. It is obvious that the English
language is majorly used in any forms, and almost all
the other languages have some information related to
the English language e.g. bi-lingual texts, bi-lingual
dictionaries. The efforts to utilize the advantages of
the English language are to increase the knowledge

about the target languages. We proposed a term-
based ontology alignment [9][7] to increase our
language and terminology resources via the English
language resources. Words in the classes are used to
create a vector model for each class. By computing

the extended Jaccard similarity value, we are able to
align the 2 concept hierarchies of Thai and English.
We are extending our research to use English as a
common language for aligning the concept
hierarchies that do not have the direct link.

Figure 8: Satisfaction for the test queries

Given two ontologies called the source ontology

Ts and the target ontology Tt, our objective is to align
all the concepts (or semantic classes) between these
two ontologies. Each ontology consists of concepts,
denoted by C1, . . . , Ck. In general, the concepts and
their corresponding relations of each ontology can be
significantly different due to the theoretical
background used in the construction process.
However, for the lexical ontologies such as the MMT
semantic hierarchy and the EDR concept dictionary,
it is possible that the concepts may contain shared
members in terms of English words. Thus, we can
match the concepts between two ontologies using the
similarity of the shared words.

In order to compute the similarity between two
concepts, we must also consider their related child
concepts. Given a root concept Ci, if we flatten the
hierarchy starting from Ci, we obtain a nested cluster,
whose largest cluster dominates all sub-clusters. As a
result, we can represent the nested cluster with a
feature vector ci = (w1, . . . ,w|V|)T , where features are
the set of unique English words V extracted from
both ontologies, and wj is the number of the word j
occurring the nested cluster i. We note that a word
can occur more than once, since it may be placed in
several concepts on the lexical ontology according to
its sense.

After concepts are represented with the feature
vectors, the similarity between any two concepts can
be easily computed. A variety of standard similarity

measures exists, such as the Dice coefficient, the
Jaccard coefficient, and the cosine similarity [4]. In
our work, we require a similarity measure that can
reflect the degree of the overlap between two
concepts. Thus, the Jaccard coefficient is suitable for
our task. Recently, Strehl and Ghosh [8] have
proposed a version of the Jaccard coefficient called
the extended Jaccard similarity that can work with
continuous or discrete non-negative features. Let ||xi||
be the L2 norm of a given vector xi. The extended
Jaccard similarity can be calculated as follows:

j
T
iji

j
T
i

ji
xxxx

xx
xxJaccardSim

−+
= 22

),(

We now describe an iterative algorithm for term-
based ontology alignment. As mentioned earlier, we
formulate that the ontology structure is in the form of
the general tree. Our algorithm aligns the concepts on
the source ontology Ts to the concepts on the target
ontology Tt by performing search and comparison in
the top-down manner.

Given a concept Ci ∈ Ts, the algorithm attempts
to find the most appropriate concept B* ∈ Tt, which
is located on an arbitrary level of the hierarchy. The
algorithm starts by constructing the feature vectors
for the current root concept on the level l and its child
concepts on the level l + 1. It then calculates the
similarity scores between a given source concept and
candidate target concepts. If the similarity scores of
the child concepts are not greater than the root

concept, then the algorithm terminates. Otherwise, it
selects a child concept having the maximum score to
be the new root concept, and iterates the same
searching procedure. Algorithms 1 and 2 outline our
ontology alignment process.

Figure 9 shows a simple example that describes
how the algorithm works. It begins with finding the
most appropriate concept on Tt for the root concept 1
∈ Ts. By flattening the hierarchy starting from given
concepts (‘1’ on Ts, and ‘a’, ‘a-b’, ‘a-c’ for Tt), we

can represent them with the feature vectors and
measure their similarities. On the first iteration, the
child concept ‘a-c’ obtains the maximum score, so it
becomes the new root concept. Since the algorithm
cannot find improvement on any child concepts in the
second iteration, it stops the loop and the target
concept ‘a-c’ is aligned with the source concept ‘1’.
The algorithm proceeds with the same steps by
finding the most appropriate concepts on Tt for the
concepts ‘1-1’ and ‘1-2’. It finally obtains the
resulting concepts ‘a-c-f’ and ‘a-c-g’, respectively.

Algorithm 1: OntologyAlignment
input : The source ontology Ts and the target

ontology Tt.
output : The set of the aligned concepts A.
begin

Set the starting level, ; 0←l

while max
s

l
s TT ≤ do

Find all child concepts on this level,
l

s
k
ii TC ∈=1}{ ;

Flatten and build their k
iiC 1}{ =

corresponding feature vectors, { ;k
iic 1} =

For each ci, find the best matched concepts
on Tt ,
←B FindBestMatched(ci);

},{ iCBAA ∪← ;
Set l ; 1+← l

end
end

Algorithm 2: FindBestMatched(ci)
begin

Set the starting level, ; 0←l
BestConcept Tt (root concept); ←
repeat

stmp JaccardSim(ci,BestConcept); ←

if max
s

l
s T≤T then

 return BestConcept;
Find all child concepts on this level,

l
t

h
jj TB ∈=1}{ ;

Flatten and build corresponding h
jjB 1}{ =

feature vectors, { ; h
jjb 1} =

sj* argmaxj JaccardSim(ci,{); ← h
jjb 1} =

 if sj* > stmp then
BestConcept← Bj*;

Set l ; 1+← l
 until BestConcept does not change;

return BestConcept;
end

Figure 9: An example of finding the most appropriate

concept on Tt for the root concept 1 sT∈

In our experiments, we used a portion of the
MMT semantic hierarchy and the EDR concept
dictionary as the source and the target ontologies,
respectively. We considered the ‘animal’ concept as
the root concepts and extracted its related concepts.
In the EDR concept dictionary, however, the relations
among concepts are very complex and organized in
the form of the semantic network. Thus, we pruned
some links to transform the network to a tree
structure. Starting from the ‘animal’ concept, there
are more than 200 sub-concepts (containing about
7,600 words) in the EDR concept dictionary, and 14
sub-concepts (containing about 400 words) in the
MMT semantic hierarchy. It is important to note that
these two ontologies are considerably different in
terms of the number of concepts and words.

In our experiments, we used a portion of the
MMT semantic hierarchy and the EDR concept
dictionary as the source and the target ontologies,
respectively. We considered the ‘animal’ concept as
the root concepts and extracted its related concepts.
In the EDR concept dictionary, however, the relations
among concepts are very complex and organized in
the form of the semantic network. Thus, we pruned
some links to transform the network to a tree
structure. Starting from the ‘animal’ concept, there
are more than 200 sub-concepts (containing about
7,600 words) in the EDR concept dictionary, and 14
sub-concepts (containing about 400 words) in the

MMT semantic hierarchy. It is important to note that
these two ontologies are considerably different in
terms of the number of concepts and words.

The proposed algorithm is used to find
appropriate EDR concepts for each one of 14 MMT
concepts. The results are shown in Table 5. In the
table, there are 6 relations (marked with the symbol
‘*’) that are manually classified as exact mapping.
This classification is done by inspecting the
structures of both ontologies by hand. If the
definition of a given MMT concept appears in the
EDR concept and the algorithm seems to correctly
match the most suitable EDR concept, this mapping
will be classified as exact mapping. The remaining 8
MMT concepts, e.g. ‘cold-blood’ and ‘amphibian’,
are mapped to closely related EDR concepts,
although they are not considered to be exact
mapping. The EDR concepts found by our algorithm
for these 8 MMT concepts are considered to be only
the subset of the source concepts. For example, the
‘amphibian’ concept of the MMT is mapped to the
‘toad’ concept of the EDR.

Table 5: Results of aligned concepts between

MMT semantic hierarchy and EDR concept
dictionary

MMT concept EDR concept dictionary
--vertebrate vertebrate
 --warm-blood mammal
 --mammal mammal
 --bird bird
 --cold-blood reptile
 --fish fish
 --amphibian toad
 --reptile Reptile
 --snake snake
--invertebrate squid
 --worm leech
 --insect hornet
 --shellfish crab
 --other sea creature squid

By analyzing the results, we can classify the

MMT words that cannot find any associated EDR
words into 4 categories.

1. Incorrect spelling or wrong grammar: Some
English words in the MMT semantic hierarchy are
simply incorrect spelling, or they are written with
wrong grammar. For example, one description of a
tiger species is written as ‘KIND A TIGER’.
Actually, this instance should be ‘KIND OF A
TIGER’. The algorithm can be used to find words
that possible have such a problem. Then, the words
can be corrected by lexicographers.

2. Inconsistency: The English translation of Thai
words in the MMT semantic hierarchy was
performed by several lexicographers. When dealing
with Thai words that do not have exact English
words, lexicographers usually enter phrases as
descriptions of these words. Since there is no

standard of writing the descriptions, these are
incompatibility between descriptions that explain the
same concept. For example, the following phrases are
used to describe fishes that their English names are
not known.

– Species of fish
– A kind of fish
– Species of fresh water fish
3. Thai specific words: The words that we used in

our experiments are animals. Several animals are
region specific species. Therefore, they may not have
any associated English words. In this case, some
words are translated by using short phrases as
English descriptions of these Thai words. Another
way to translate these words is to use scientific names
of species.

The problems mentioned earlier make it more
difficult to match concepts by the algorithm.
However, we can use the algorithm to identify where
the problems occur. Then, we can use these results to
improve the MMT ontology.

6. Summary and Future Work
 The tasks of language identification, word
extraction, dictionary-less search engine and term-
based ontology alignment had been selected to study
by means of the proposed model for unified language
processing. The tasks had been evaluated and
resulted in a significant performance. Therefore, a
non-segmenting language can be efficiently
processed without relying on the word boundary
information at all. It shows that the footprint of byte
sequence of a language is sufficient for processing an
input text. It is a direct input with most reliable
information. The advantages in these statistical based
approaches are also a fundamental work for unifying
multi-lingual tasks where language dependent parts
can be lessened.

7. References
[1] Church, K. W., Robert, L., and Mark, L., “A status

report on ACL/DCL,” In Proceedings of the seventh
Annual Conference of the UW Centre New OED and
Text Research: Using Corpora, pp. 84–91, 1991.

[2] Haussler, D., “Convolution kernels on discrete
structures,” Technical Report UCSC-CRL-99-10,
Department of Computer Science, University of
California at Santa Cruz, 1999.

[3] Haveliwala, T., “Topic-sensitive pagerank,” In
Proceedings of the Eleventh International Conference
on World Wide Web, pp. 517–526, 2002.

[4] Manning, C. D., and Sch¨utze, H., Foundations of
statistical natural language processing, MIT Press,
Cambridge, MA., 1999.

[5] Quinlan, J. R., “C4.5 Programs for Machine
Learning,” Morgan Publishers San Mated,
California, 302p., 1993.

[6] Shannon, C. E., “A Mathematical Theory of
 Communication,” Bell System Technical Journal
 27, pp. 379-423, 1948.
[7] Shisanu Tongchim, Canasai Kruengkrai, Virach

Sornlertlamvanich, Prapass Srichaivattana and Hitoshi

Isahara, “Analysis of an Iterative Algorithm for Term-
Based Ontology Alignment,” to appear in Proceedings
of The 2nd IJCNLP, Jeju Island, Korea, 2005.

[8] Strehl, A., Ghosh, J., and Mooney, R. J., “Impact of
similarity measures on web-page clustering,” In
Proceedings of AAAI Workshop on AI for Web Search
pp. 58–64, 2000.

[9] Virach Sornlertlamvanich, Canasai Kruengkrai, Shisanu
Tongchim, Prapass Srichaivattana and Hitoshi Isahara.
“Term-Based Ontology Alignment,” Proceedings of
the Second International Workshop on UNL, Other
Interlinguals and their Applications, Mexico City,
Mexico, 2005.

[10] Virach Sornlertlamvanich, Pongtai Tarsaku, Prapass
Srichaivattana, Thatsanee Charoenporn and Hitoshi
Isahara, “Dictionary-less Search Engine for the
Collaborative Database,” Proceedings of the Third
International Symposium on Communications and
Information Technologies (ISCIT-2003), Songkhla,
Thailand, 2003.

[11] Virach Sornlertlamvanich and Tanaka Hozumi, “The
Automatic Extraction of Open Compounds from Text
Corpora,” Proceedings of the 16th International
Conference on Computational Linguistics (COLING-
96), pp. 1143-1146, 1996.

[12] Virach Sornlertlamvanich, Tanapong Potipiti and
Thatsanee Charoenporn, “Automatic Corpus-based
Thai Word Extraction with the C4.5 Learning
Algorithm,” Proceedings of the 18th International
Conference on Computational Linguistics
(COLING2000), Saarbrucken, Germany, July-August
2000, pp. 802-807, 2000.

[13] Watkins, C., “Dynamic alignment kernels,” Technical
Report CSD-TR-98-11, Royal Holloway, University of
London, 1999.

[14] Yamamoto, M. and Church, K. W., “Using Suffix
 Arrays to Compare Term Frequency and
 Document Frequency for All Substrings in

Corpus,” Proceedings of the Sixth Workshop on
Very Large Corpora, pp. 27-37, 1998.

