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Abstract—Object detection for waste management is 

limited by the scarcity of large, labeled real-world 

datasets. To overcome this, we developed a synthetic 

dataset generation method that enhances background 

diversity using depth estimation, angle adjustment, 

image feathering, and alpha blending. These techniques 

seamlessly integrate foreground waste objects into varied 

environments—ground, urban, and field—thereby 

increasing scene variety and complementing existing 

data augmentation strategies. We evaluated the synthetic 

dataset through two test cases using YOLOv8L models. 

In Test Case 1, models trained with synthetic data 

achieved a precision of 0.611 and an mAP50 of 0.453, 

outperforming those trained solely on real data 

(precision: 0.529; mAP50: 0.399). Test Case 2 examined 

different real-synthetic data ratios, where the 75% Real 

/ 25% Synthetic model achieved the highest mAP50 of 

0.884, surpassing the 100% Real model's mAP50 of 

0.823. These results demonstrate that our synthetic 

dataset effectively mitigates data scarcity and enhances 

object detection performance. Additionally, 

incorporating real image features is crucial for 

preventing misclassifications and partial detections, 

highlighting the importance of balancing real and 

synthetic data. Our approach offers a scalable and cost-

effective solution for augmenting training data with 

diverse environmental contexts, leading to more reliable 

and accurate object detection models in challenging real-

world settings. 

Keywords—Synthetic Data Generation, Object 

Detection, Data augmentation, Background diversity, 

Image Blending, Environmental Variability 

I.  INTRODUCTION  

The growing demand for robust object detection 

models across various domains highlights the 

challenges of collecting and annotating large-scale 

datasets, especially in waste detection where objects 

appear in diverse and unpredictable environments. 

Acquiring real-world data is both expensive and time-

consuming, limiting the availability of comprehensive 

datasets necessary for training high-performing 

models. To overcome these limitations, synthetic data 

generation has emerged as a promising solution [1]. 

Techniques such as image blending offer scalable and 

cost-effective alternatives that maintain the diversity 

and complexity essential for effective model      

training [2]. By artificially generating data, researchers 

can address issues related to data scarcity, privacy 

concerns, and high annotation costs, facilitating the 

development of more accurate and generalizable 

object detection systems. 

Synthetic data not only enhances model 

performance but also enables domain adaptation, as 

demonstrated by various studies. Shorten and 

Khoshgoftaar [1] highlighted techniques like image 

augmentation, inpainting, and generative models that 

effectively supplement or replace real-world datasets. 

Frid-Adar et al. [7] showcased the potential of 

Generative Adversarial Networks (GANs) in creating 

synthetic medical images with performance 

comparable to models trained on real data. Similarly, 

Richter et al. [8] utilized synthetic data from video 

games for autonomous driving, and Wang et al. [9] 

applied it to crowd counting, enhancing accuracy in 

varying densities. Despite these advancements, 

challenges such as artifact boundaries—visible seams 

and inconsistencies—reduce image realism [5]. 

Advanced blending techniques like Poisson Image 

Editing [10], Multi-layer Alpha Blending [11], and 

Multiblending [12] have been developed to address 

these issues, ensuring seamless integration of 

foreground objects into diverse backgrounds. Building 

on these methods. 
This research explores generating synthetic datasets 

using inpainting techniques for waste detection. By 
integrating alpha blending and image feathering, the 
study aims to produce more realistic and contextually 
accurate synthetic images, enhancing dataset diversity 
and quality. The generated dataset will be evaluated by 
training YOLO [18] models and testing on real-world 
datasets such as COCO and TACO, anticipating 
improved object detection performance in waste 
management tasks. This study contributes to 
understanding how synthetic data can support real-
world applications, particularly where real data is 
limited or difficult to acquire and lays the groundwork 



for more effective data generation methodologies in 
computer vision research. The paper is organized as 
follows: Problem Analysis, Methodology, Results, and 
Conclusion. 

II. PROBLEM ANALYSIS 

Effective training of object detection models for 

waste management requires datasets that encompass 

diverse environments such as urban, field, and muddy 

settings. However, existing public datasets present 

significant limitations in environmental diversity and 

data volume. 

     As illustrated in Table I, the COCO 2017 dataset 

offers a vast number of images with diverse object 

classes but lacks sufficient environmental diversity, 

making it less ideal for specialized tasks like waste 

detection. The TACO dataset, while focused on trash 

annotations, is limited by its small size and a high 

proportion of tiny objects, which can negatively 

impact model training and performance. 

TABLE I.  COMPARISON OF DATASETS BY ENVIRONMENTAL 

RATIOS 

Dataset 

 

Total 

Image 

Environment (%) 

Limitation 

Urban Field Muddy Other 

COCO 

2017 
164K ~50 ~30 ~10 ~10 

General 

object classes, 

limited 

environmental 

diversity 

TACO 1500 ~45 ~30 ~20 ~5 

Small dataset 

size, many 

tiny objects 

Roboflow 

[19] 
7600 ~56 ~20 ~10 ~10 

Limited 

environmental 

diversity 

Roboflow 

[20] 
2100 ~60 ~15 ~15 ~10 

Limited 

environmental 

diversity 

Our 3000 33 33 33 1 
Balanced 

environments 

 

The Roboflow datasets ([19], [20]) provide a 

moderate number of images with a predominant focus 

on urban environments. Although they offer more 

targeted data compared to COCO, they still suffer from 

limited environmental diversity, restricting the model's 

ability to generalize across different settings. 

In contrast, our Synthetic Dataset addresses these 

limitations by ensuring a balanced representation 

across urban, field, and muddy environments. With 

3,000 images evenly distributed among these contexts, 

our dataset enhances environmental diversity and 

contextual accuracy. Additionally, the use of synthetic 

generation techniques mitigates issues related to data 

scarcity and high annotation costs, providing a scalable 

and cost-effective solution for training more reliable 

and accurate object detection models in waste 

management. 

III. METHODOLOGY 

The primary objective of this research is to develop 
a methodology for generating a customized synthetic 
dataset aimed at improving object recognition accuracy 
in waste detection tasks. This involves automatically 
separating foreground objects from their backgrounds, 
generating new background images, reconstructing 
composite images, and validating the effectiveness of 
these synthetic images. The methodology comprises 
can be illustrated in Figure 1. 

 

Fig. 1. A workflow of a proposed methodology. 

A. Foreground Object Separation 
For the extraction of foreground objects, the Trash 

Annotations in Context (TACO) dataset [16] was 
utilized. The TACO dataset provides annotated images 
of litter and waste across various environments, making 
it an ideal source for identifying relevant objects such 
as plastic bottles and cans. The following steps were 
undertaken to prepare the foreground objects: 

1) Annotation-Based Segmentation 

The annotations provided in the TACO dataset were 

used to identify pixel regions corresponding to 

foreground objects. This involved isolating objects 

like plastic bottles and cans from their backgrounds. 

2) Binary Mask Generation 

Binary masks were created where foreground 

objects were represented in black and the background 

in white. Image processing libraries such as OpenCV 

and PIL were employed to generate precise masks that 

accurately align with object boundaries. 

3) Quality Assurance 

Visual inspections were conducted to ensure that the 

masks accurately represented the objects without 

including any background elements. This step was 

crucial to maintaining the integrity of the synthetic 

images. As shown in Figure 2. 

 

 
Fig. 2. Segmented images and mask for foreground object. 



B. Background Image Selection 

The selection of background images was critical to 

ensure environmental diversity in the synthetic dataset. 

Three distinct background environments were chosen: 

field, muddy, and urban. A total of 90 background 

images were curated, with 30 images representing each 

environment type, presented in Table II. The 

preparation process included the following steps: 

1) Environment Categorization 

Background images were categorized into three 

environments—field, muddy, and urban—to capture a 

wide range of real-world scenarios where waste is 

commonly found. 

2) Background Selection 

From each category, 30 high-quality background 

images were selected. To prevent data overfitting, 

three images from each environment type were 

randomly chosen for each synthetic image generation 

cycle. 

3) Background Suitability 

We selected object-free backgrounds with angles 

between 20° and 75° to prevent interference with 

foreground waste objects and ensure diverse 

perspectives, enhancing the synthetic dataset's variety. 

TABLE II.  COMPARISON OF DATASETS BY ENVIRONMENTAL 

RATIOS 

Environment Quantity Image Example 

Urban 30 

 

Field 30 

 

Muddy 30 

 

 

C. Synthetic Image Generation 

This study generates synthetic images by 
integrating five foreground objects with randomly 
selected backgrounds from 90 urban, field, and muddy 
environments. Using depth estimation, angle 
adjustment, feathering, and alpha blending, this method 
enhances dataset diversity and realism, improving 
object detection in waste management. Figure 3 
illustrates the workflow. 

 

Fig. 3. Workflow of Synthetic Image Generation. 

1) Environment Categorization 

a) Depth Estimation 

The MiDas model was utilized to determine the 

depth of both foreground and background elements. 

MiDas [22] estimates depth based on visual cues such 

as object shapes, shading, occlusion, perspective, and 

texture gradients, providing a spatial understanding 

necessary for realistic object placement. 

b) Scaling Ratio Calculation 

By analyzing the average depth of foreground and 

background elements, the appropriate scaling ratio was 

calculated using the following formula: 

 

Scaling Ratio �
�̅foreground 

�̅background 

 
     

       (1) 

 

Here, �̅foreground represents the average depth of the 

foreground, and �̅background represents the average 

depth of the background. The bar over the  �̅ indicates 

the average (mean) of those depths. This ratio from (1) 

ensures that the foreground objects are proportionally 

scaled to fit naturally within the background 

environments. 

c) Annotation Alignment 

Alongside scaling, annotations were adjusted to 

align accurately with the transformed foreground 

objects, maintaining the integrity of object boundaries. 

d) Angle Adjustment 

The foreground objects were rotated and scaled 

using the Scale-Invariant Feature Transform (SIFT) 

algorithm. SIFT [17] calculates keypoints within an 

image and compares their angles to align the 

foreground with the background, ensuring that the 

objects match in terms of rotation and orientation. 

2) Image Blending 
To achieve seamless integration of foreground 

objects into diverse backgrounds and address artifact 
boundaries, advanced image blending techniques were 
employed 

a) Alpha Blending 

In ground-based environments, alpha blending is 

utilized to seamlessly merge foreground objects with 

backgrounds using a process known as Equation (2). 

Initially, a binary mask is converted to a three-channel 

format to align with the RGB channels of the images. 

The edges of the mask are then feathered to smooth 

transitions between the foreground and background, 

effectively reducing visible seams and artifacts. After 

overlaying the smooth mask onto the background 

image, the mask is normalized to ensure consistent 

blending across different images. The final composite 

image is created using the formula: 

 

Composite Image � � ⋅ � � 	1 � �� ⋅ 
     (2) 
 

Where α is the normalized, blurred mask that dictates 

the transparency of each pixel, ensuring a seamless 



integration of the Foreground (�) and Background (
) 

layers. 

b) Image Feathering 

To enhance the realism of composite images, we 
used image feathering and alpha blending to smooth 
foreground edges and create seamless transitions. After 
blending, we adjusted the brightness and contrast to 
match the background’s lighting and corrected the 
color balance to harmonize color tones. These steps 
ensured visual consistency and minimized artifact 
boundaries, resulting in more realistic composite 
visuals. 

D. Model Training and Evaluation 

To evaluate the effectiveness of the synthetic dataset 
in enhancing object detection performance, two test 
cases were conducted: 

1) Test Case 1: Synthetic Dataset vs. Real Dataset 

Training 

In the first test case, two YOLOv8L object detection 

models were trained separately for 200 epochs with a 

batch size of 16. One model utilized the synthetic 

dataset combined with 10% of the real Trash 

Annotations in Context (TACO) dataset [16] to help 

the model learn real image features and prevent 

overfitting. The other model was trained solely on the 

real TACO dataset. Both models were then evaluated 

on a common validation set from the TACO dataset to 

assess their generalization capabilities. The primary 

evaluation metric was mean Average Precision (mAP), 

supplemented by precision and recall scores. This 

comparison aimed to determine whether the synthetic 

dataset could match or surpass the performance of 

models trained exclusively on real data. 

2) Test Case 2: Impact of Real and Synthetic Data 

Ratios on Model Performance 

To evaluate the influence of varying real and 

synthetic data ratios on object detection performance, 

five YOLOv8L models were trained with different 

data compositions ratios in Table IV. 
Each configuration was trained for 200 epochs with 

a batch size of 16, applying consistent augmentation 
techniques to ensure comparability. The trained models 
were then evaluated on a custom test set of 1,150 
images encompassing three distinct environments—
urban, field, and muddy—to assess their performance 
in diverse real-world scenarios. Evaluation metrics 
included Precision, Recall, mean Average Precision 
(mAP), This structured approach aims to identify the 
optimal balance between real and synthetic data that 
maximizes detection accuracy and generalization, 
thereby validating the effectiveness of synthetic data in 
enhancing object detection models for waste 
management tasks. 

IV. RESULT 

A. Test Case 1: Synthetic Dataset vs. Real Dataset 

Training 

In the first test case, the YOLOv8L model trained 

on the synthetic dataset outperformed the model 

trained solely on the real-world TACO dataset, 

achieving a higher precision of 0.611 and an mAP50 

of 0.453, compared to 0.529 precision and 0.399 

mAP50 for the real dataset model as shown in Table 

III. However, the synthetic model exhibited a slightly 

lower recall (0.307 vs. 0.320), indicating that while it 

was more accurate in its detections, it missed a few 

relevant objects. This improvement in precision and 

mAP50 suggests that the synthetic dataset effectively 

enhanced the model's ability to correctly identify 

objects without increasing false positives. 

TABLE III.  MODEL PERFORMANCE METRICS ON SYNTHETIC 

VS. ORIGINAL DATASET 

Metric mAP50 Precision  Recall 

Real dataset model [16] 0.529 0.320 0.399 

Synthetic dataset model 0.611 0.307 0.453 

      

     Despite these gains, the synthetic model faced 

challenges in diverse environments, as illustrated in   

Figure 4, where it sometimes misclassified objects or 

only partially detected them (e.g., detecting 50% of an 

actual object). These issues stem from the variability 

in backgrounds and the complexity of real-world 

scenes, which may not be fully captured by the 

synthetic data. Additionally, certain classes may have 

overlapping features with backgrounds, leading to 

incorrect predictions. To address these limitations, 

further refinement of the synthetic data generation 

process is necessary, potentially by increasing the 

diversity and complexity of the synthetic backgrounds 

and incorporating more varied object orientations and 

occlusions. Overall, the results demonstrate that while 

synthetic data can significantly enhance object 

detection performance in waste management tasks, 

ongoing improvements are required to achieve 

comprehensive detection across highly varied and 

complex real-world environments. 

 

 
Fig. 4. Example of detected image in Test Case 1. 

B. Test Case 2: Impact of Real and Synthetic Data 

Ratios on Model Performance 

To assess the influence of varying real and 

synthetic data ratios on object detection performance, 

five YOLOv8L models were trained with different 



data compositions. The performance metrics for each 

configuration are presented in Table IV. 

 

TABLE IV.  MODEL PERFORMANCE METRICS ON SYNTHETIC 

VS. ORIGINAL DATASET 

Data composition 
Precision Recall mAP50 

Real (%) Synthetic (%) 

0 100 0.461 0.079 0.262 

25 75 0.918 0.494 0.714 

50 50 0.959 0.726 0.854 

75 25 0.988 0.772 0.884 

100 0 0.948 0.753 0.823 

 

The results demonstrate that incorporating 

synthetic data enhances model performance up to a 

certain threshold. Notably, the 75% Real / 25% 

Synthetic model achieved the highest mAP50 of 0.884, 

surpassing the 100% Real model's mAP50 of 0.823. 

This improvement suggests that synthetic data 

introduces beneficial diversity, enabling the model to 

generalize better across varied environments. 

 

 
Fig. 5. Example of detected image in Test Case 2. 

However, as illustrated in Figure 5, the 0% Real / 

100% Synthetic model struggled with 

misclassifications and partial object detections, likely 

due to insufficient learning of real image features and 

the presence of artifact boundaries. Without exposure 

to real-world image characteristics, the model cannot 

accurately interpret and detect objects in complex 

settings. In contrast, the 50% Real / 50% Synthetic 

model demonstrated significantly better accuracy and 

reliability by balancing real image features with 

synthetic diversity. Testing on datasets encompassing 

three different environments—urban, field, and 

muddy—highlighted that models trained with a mix of 

real and synthetic data could better handle 

environmental variability. These findings underscore 

the importance of integrating real images to provide 

foundational visual cues that synthetic data alone 

cannot fully replicate. Additionally, addressing artifact 

boundaries through techniques like alpha blending and 

image feathering, along with rigorous quality 

assurance measures—including visual inspections and 

quantitative metrics was crucial in maintaining the 

realism and integrity of synthetic images. This balance 

ensures that synthetic data effectively complements 

real data, leading to more accurate and robust object 

detection models in waste management tasks. 

V. CONCLUSION 

This study developed a methodology for creating a 

customized synthetic dataset to enhance object 

recognition accuracy in waste detection using the 

YOLOv8L model. By applying advanced image 

processing techniques—depth estimation, angle 

adjustment, alpha blending, and image feathering—

foreground waste objects were seamlessly integrated 

into diverse backgrounds, resulting in realistic 

composite images. The synthetic dataset, combined 

with varying proportions of real-world data, 

effectively improved model performance. 

In Test Case 1, models trained with synthetic data 

achieved a precision of 0.611 and an mAP50 of 0.453, 

outperforming those trained solely on real data 

(precision: 0.529; mAP50: 0.399). Test Case 2 further 

demonstrated the advantage of synthetic data, with the 

75% Real / 25% Synthetic model achieving a higher 

mAP50 (0.884) compared to the 100% Real model 

(mAP50: 0.823). However, models trained exclusively 

on synthetic data showed lower precision and 

struggled with misclassifications and partial 

detections, highlighting the critical role of real image 

features. Without real images demonstrating how 

objects appear in specific environments, the model 

lacks contextual understanding to accurately identify 

or predict object-environment interactions, resulting in 

missed detections or incorrect classifications. 

Exposure to real images enables the model to discern 

whether waste objects and environmental conditions 

are realistic, thereby enhancing detection accuracy and 

reliability. 

Future work should focus on optimizing object 

placement, incorporating metadata such as object 

angles and viewpoints (e.g., top, front, bottom), and 

ensuring the contextual appropriateness of objects 

within specific environments (e.g., determining if a 

clean bottle realistically fits in a muddy setting). 

Additionally, integrating more sophisticated 

generative models and expanding dataset diversity will 

further enhance model robustness and generalization 

capabilities. These improvements will contribute to 

developing more reliable and accurate object detection 

systems in varied and challenging real-world 

environments. 
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