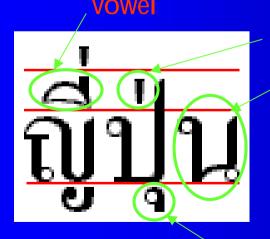
Speech Research and Corpora in Thailand

Virach Sornlertlamvanich

Information Research and Development Division National Electronics and Computer Technology Center (NECTEC), THAILAND

virach@nectec.or.th


Oriental COCOSDA Workshop 2000, Oct. 16, 2000, Beijing, China.

Introduction to Thai (1): Morphology

Running text (a paragraph):

สวัสดีครับ ผมชื่อวิรัช ศรเลิศล้ำวาณิช ปัจจุบันเป็นผู้อำนวยการฝ่ายวิจัยและพัฒนาสาขาสารสนเทศ ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ ผมเริ่มสนใจงานวิจัยในสาขาการประมวล ผลภาษาธรรมชาติตั้งแต่ที่ได้มีโอกาสเข้าร่วมโครงการวิจัยและพัฒนาระบบแปลภาษาในปี 1989

Writing in 4 levels

tone consonant

- No. of characters (signs)46 consonants; 18 vowels;4 tones; 9 symbols; 10 digits
- No word boundary
 Ex: "GODISNOWHERE"
 - 1) God is nowhere
 - 2) God is now here
 - 3) God is no where

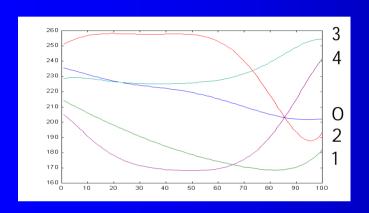
Introduction to Thai (2): Syntax

- No explicit sentence marker
 - space character for pausing
- Sentence pattern
 - (S) (V) (O) Ex: ฉัน เห็น เขา (I) (saw) (him)
- No inflection forms
 - tensesuse adverbs and auxiliary verbs
 - plural or singular nouns use quantifiers, classifiers or determiners
 - subject-verb agreements
- No syntactic marker
 - word position

Introduction to Thai (3): Phonology

- A Thai syllable (sounds):

 / C(C) V(V) C T/


 initial consonant
 (33) vowel (24) consonant (8)
- Different tones convey different meanings
 /su:aj4/ = beautiful /su:aj0/ = terrible
- No liaison:
 A word has the same pronunciation, no matter where it is.
- Linking syllable pronunciation:
 ตุ๊กแก (gecko) = tuk4 kae -> ตุ๊ก = tuk4
 ตุ๊กตา (doll) = tuk4 ka1 ta0 -> ตุ๊ก = tuk4 ka1
 (grapheme to phoneme conversion)

Introduction to Thai (4): Summary

- Simple grammar
 - easy for generation
 - hard for analysis and recognition
- Sharable problems among Asian languages
 - word segmentation
 - indexing for IR
 - lexical acquisition
 - tone recognition and generation

Research on Speech (1): Recognition

Tone recognition

Thai Tones

Current state

- Object: Syllable-segmented speech
- Feature: Energy, Zero-crossing, FO
- Method: Neural net,
- Analysis-by-synthesis Ongoing
- Continuous speech
- Syllable detection

Current state - Object: Connected speech

- Feature: Energy, Zero-crossing, Duration

Ongoing - Continuous speech

Research on Speech (2): Recognition

Isolated word-based recognition

Current state - Mel-frequency cepstrum (MFC)

- Neural net, Fuzzy, HMM

Ongoing - Applications (digits, commands)

Large vocabulary continuous speech recognition (LVCSR)

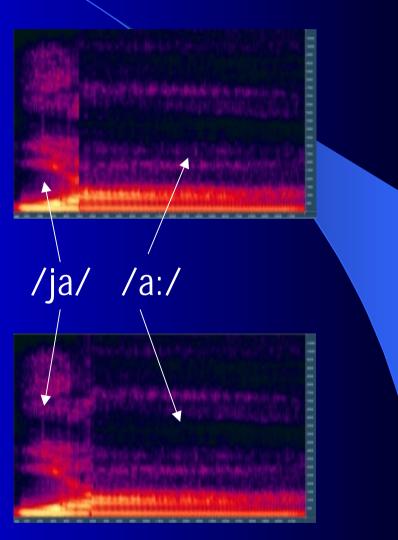
Current state - Isolated phoneme recognition

Preparing basic tools for CSR

Ongoing - Creating LVCSR corpus

Research on Speech (3): Synthesis

- Text analysis Current state
 - Word / Phrase / Sentence segmentation by POS tagging model, Rule, Machine learning
 - Letter-to-sound: Rules and Pronunciation dictionary
 - Ongoing Letter-to-sound: PGLR parser (87-94%)
- Speech synthesis


- Current state Demisyllable-concatenation based
 - LSP-based spectral smoothing
 - Duration adjustment
 - FO contour smoothing

Ongoing - Smoothing, Statistical prosody analysis

Research on Speech (4): Synthesis

LSP parameter smoothing

ยา /ja:/

Research on Speech (5): Speaker Recognition

- Speaker identification (SID)
 - Current state Text-dependent, Closed speaker set,
 Office environment speech
 - Dynamic time warping (DTW; 90-97%),
 Gaussian mixture model (GMM; 92-98%)
 - Ongoing Telephony environment speech
- Speaker verification (SV) Ongoing

That Speech Corpora (1)

Current state:

A number of separated speech corpora
 e.g. Speech database of Thai digits O-9 for SID
 Speech database of Thai polysyllabic words

Ongoing:

- LVCSR corpus for Speech dictation system up to 5,000 vocabulary size with Phonetically-balanced set
- Prosody tagging speech corpus
 for statistical prosody analysis
 in improving synthesis system

Thai Speech Corpora (2)

Basic tools required:

Dictionary

- Manually coding
- Corpus-based extraction

Word segmentation

- Longest matching (92%)
- Maximal matching (93%)
- POS N-gram

(96%)

Machine learning (97%)

Sentence extraction

- POS N-gram

(85%)

- Machine learning

(89%)

Thai Speech Corpora (3)

Basic tools required:

Letter-to-sound

- Rule-based and dictionary
- PGLR parser

(87% - 94%)

Basic tagged corpus

ORDHID: POS tagging corpus160 documents;5.75 MB; 311,426 words

Other tools

- Automatic sentence selection for phonetically balanced set
- Automatic phoneme labeling

Thai Text to Speech: Demo

สวัสดีครับ ผมชื่อวิรัช ศรเลิศล้ำวาณิช ปัจจุบันเป็นผู้อำนวยการฝ่ายวิจัยและพัฒนา สาขาสารสนเทศ ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ ผมเริ่มสน ใจงานวิจัยในสาขาการประมวลผลภาษาธรรมชาติตั้งแต่ที่ได้มีโอกาสเข้าร่วมโครงการ วิจัยและพัฒนาระบบแปลภาษาในปี 1989

Hello, I am Virach Sornlertlamvanich, the director of Information Research and Development Division, National Electronics and Computer Technology Center. I began to interest myself in the research of Natural Language Processing since having a chance in participating in the Machine Translation Research and Development project in 1989.