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Abstract. The Principal Direction Divisive Partitioning (PDDP) algorithm is a fast and
scalable clustering algorithm [3]. The basic idea is to recursively split the data set into
sub-clusters based on principal direction vectors. However, the PDDP algorithm can
yield poor results, especially when cluster structures are not well-separated from one
another. Its stopping criterion is based on a heuristic that often tends to over-estimate
the number of clusters. In this paper, we propose simple and efficient solutions to the
problems by refining results from the splitting process, and applying the Bayesian In-
formation Criterion (BIC) to estimate the true number of clusters. This motivates a
novel algorithm for unsupervised clustering, which its experimental results on differ-
ent data sets are very encouraging.

1 Introduction

Unsupervised clustering is one of the important techniques in scientific data analysis and data
mining. The goal of clustering is to partition a set of data points into meaningful groups ac-
cording to some predefined criteria. There are many application areas of clustering, including
document clustering, gene expression analysis, and image segmentation. A wide variety of
algorithms for unsupervised clustering problems have been intensively studied. For exam-
ple, the classicalk-means algorithm and its extensions group the input data intok clusters
such that all the points in each cluster are more similar to one another than to those in the
other clusters. One major drawback of thek-means algorithm is that the user must supply the
number of clusters. Other approaches, such as agglomerative algorithms, have quadratic (or
higher order) computational complexity and do not scale up [6].

Recently, Boley [3] has developed a fast and scalable clustering algorithm called the Prin-
cipal Direction Divisive Partitioning (PDDP) algorithm. It was firstly developed for the docu-
ment clustering task, and has been applied to other application domains, such as vision-based
texture analysis, and movie rating [2]. The PDDP algorithm has several interesting properties.
It employs the concept of the principal component analysis, and takes advantage of sparse-
ness of the input data. It also generates a hierarchal tree of clusters that inherently produces a
simple taxonomic ontology. However, the PDDP algorithm can yield poor results, especially
when cluster structures are not well-separated from one another. Furthermore, its stopping
criterion is based on a heuristic that often tends to over-estimate the number of clusters.

canasai
The 3rd International Conference on Hybrid Intelligent Systems (HIS'03), December 14-17, 2003, Melbourne, Australia. 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The first iteration of the PDDP algorithm.
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Figure 2: The third iteration of the PDDP algorithm.
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Figure 3: The fourth iteration of the PDDP algorithm.
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Figure 4: The fourth iteration of our algorithm.

Let us describe with an empirical example. We ran the PDDP algorithm on a data set
taken from [9].1 The data set consists of 334 points drawn in 2 dimensions. The actual class
labels are not given, but we can observe that it is composed of five compact clusters of data
points. Figure 1 shows the clustering result from the PDDP algorithm after the first iteration.
Based on the principal direction vectors, it splits the data into two sub-clusters. We can see
that the PDDP algorithm starts with significantly wrong partitioning on the middle left-hand
cluster.

Figure 2 and 3 demonstrate the clustering results after the third and fourth iterations. The
bottom right-hand cluster is divided into two large sub-clusters and two small sub-clusters,
although it should be retained as a single cluster. From these results, we observe that only
using the principal direction vectors for splitting clusters can produce poor solutions in some
cases. We may need to adjust the centroids and their members resulting from each splitting
process. Also, we require some information to suggest whether we should split the cluster
further or should keep it as it is. This motivates our work to alleviate these problems and
obtain better results. Figure 4 shows the clustering result using our new algorithm, which will
be described in more detail later.

In this paper, we propose simple and efficient solutions to the problems by refining results
from the splitting process, and applying a model selection technique called the Bayesian
Information Criterion (BIC) to estimate the true number of clusters. In order to adjust the

1The data set is available athttp://www.jihe.net/datasets.htm



centroids and their members in each splitting process, we locally run the2-means algorithm,
thek-means algorithm with the number of clustersk = 2, on the each data region. The BIC is
used to measure the improvement of the cluster structure between the root cluster and its two
children clusters. This can help to estimate the number of underlying clusters in the data set.
Experimental results show that our new algorithm compares favorably to the original PDDP
algorithm.

The rest of this paper is organized as follows. In Section 2, we describe the unsupervised
clustering framework, containing some important background relevant to our work. In the
context of this section, we briefly review how the original PDDP algorithm performs, and then
summarize the BIC. In Section 3, we describe our new algorithm in detail. Section 4 explains
the data sets and evaluation methods used in our experiments, and shows experimental results.
Finally, we conclude in Section 5 with some directions of future work.

2 Unsupervised Clustering Framework

2.1 Principal Direction Divisive Partitioning

In contrast to the hierarchical agglomerative clustering that performs bottom-up clustering by
merging the pair of closest points (or clusters) using some distant function, the divisive parti-
tioning algorithm does the opposite by partitioning the data into sub-clusters in the top-down
manner. For the PDDP algorithm, its partitioning scheme is based on the principal direction
vectors that correspond to the first left singular vector of the singular value decompositions
(SVD) for the cluster. LetC be a root cluster, whereC = {x1, . . . , x|C|}. After obtaining
the principal direction vector ofC denoted byuC, we can split the cluster into two children
clusters named the left childL and right childR by the following discriminant function:

fC(xi) = uT
C (xi − µC) , (1)

and

xi ∈
{
L, if fC(xi) ≤ 0
R, if fC(xi) > 0 .

(2)

whereµC is the centroid vector corresponding toC, which can be calculated as follows:

µC =
1

|C|

|C|∑
i=1

xi . (3)

We can see that the important step of the PDDP algorithm is to find the vectoruC. Let M be
the sample matrix, and̃M = M − µeT , wheree = (1, . . . , 1)T . We need to compute the
SVD of M̃ = UΣVT , and get the first column ofU to be the vectoruC of the cluster. As
suggested in [3][12], we can efficiently calculate the vectoruC by using the Lanczos method.
More details of solving the SVD with the Lanczos method can be found in [8].

The PDDP algorithm starts with all the data points in a large single cluster, and proceeds
by recursively splitting the cluster into sub-clusters based on the discriminant function in
Equation 1 and 2. It finally yields a binary tree, which leaf nodes represent the output clusters
containing their members. In order to keep the binary tree balanced, it selects an un-split
cluster to split by using the scatter value, measuring the average distance from the data points
in the cluster to their mean. An alternative technique for selecting the cluster to split is based
on the shape of the cluster [12].



2.2 Bayesian Information Criterion

Using model selection techniques has been applied in many clustering algorithms. For ex-
ample, thex-means algorithm [11], which is an extension of thek-means algorithm, also
employs the BIC to estimate the number of clusters. An equivalent technique called the Min-
imum Description Length (MDL) principal is applied in [10].

The problem of model selection is to choose the best one among a set of candidate models.
Let {x1, . . . , xn} be a set of input dataD, where eachxi ∈ <d, andD can be partitioned into
disjoint subsetC1, . . . , Ck. The BIC of the modelMi is defined as:

BIC(Mi) = l̂i(D)− pi

2
· log n , (4)

wherel̂i(D) is the log-likelihood of the data according to the modelMi, andpi is the number
of independent parameters. The BIC contains two components, where the first term mea-
sures how well the parameterized model predicts the data, and the second term penalizes the
complexity of the model [4].

The probability that a data pointxi belongs to a clusterCj can be defined as the product
of the probability of observingCj and the multivariate normal density function ofxi:

P̂ (xi) =
nj

n
· 1√

2πσ̂d
exp

(
− 1

2σ̂2
‖xi − µj‖2

)
, (5)

wherenj is the number of points in the clusterCj, andσ̂2 is the maximum likelihood estimate
(MLE) of the variance defined by:

σ̂2 =
1

n− k

∑
i

(xi − µj)
2 . (6)

Thus the maximum log-likelihood of the data in clusterCj can be calculated as:

l̂(Cj) = log
∏
i∈Cj

P̂ (xi)

=
∑
i∈Cj

(
log

1√
2πσ̂d

− 1

2σ̂2
‖xi − µj‖2 + log

ni

n

)
= −nj

2
log(2π)− nj · d

2
log(σ̂2)− nj − k

2
+ nj log nj − nj log n . (7)

Finally, we can write the BIC as follows:

BIC(Mi) =
k∑

j=1

l̂(Cj)−
pi

2
· log n . (8)

Given a set of candidate models, the model with the highest BIC score, argmaxiBIC(Mi),
is selected. We use the BIC to measure the improvement of the cluster in both the local
and global structure. We calculate the BIC locally when the PDDP algorithm performs the
splitting test in each cluster. If the BIC score of the new cluster structure is less than the
current BIC score, we do not split the cluster. The BIC is calculated globally to measure the
entire structure improvement after breaking the cluster into two children clusters.
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Figure 5: The BIC scores of the root cluster and its
children clusters.
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Figure 6: Four output centroids after partitioning fur-
ther.

3 The rPDDP algorithm

In this section, we describe our new algorithm named therPDDP (refinement PDDP) algo-
rithm. As mentioned earlier, the first problem of the PDDP algorithm is that it may produce
poor clustering results when cluster structures are not well-separated from one another, and
the relative principal direction vectors are not informative. However, it is possible to adjust the
cluster structure by re-allocating the centroid and their member positions. Thus, we run the
2-means algorithm on the local region containing two children centroids until convergence.
This idea is close to the concept of the bisectingk-means algorithm [13]. However, our initial
centroids are based on the principal direction vectors rather than using random initialization.
In other words, we can think of the centroids of two children clusters as the initial centroids
for the2-means algorithm.

The second problem of the PDDP algorithm is that it uses the stop splitting criterion
based on the user requirement or the change of the overall scatter values that often tends to
over-estimate the number of clusters. When we need to apply the algorithm to new problem
domains having little knowledge about the data, using these heuristics are inefficient to dis-
cover or predict the latent cluster structures. Here we adopt the BIC to determine whether
we should split the cluster into two sub-clusters, or retain the current cluster structure. The
BIC is also used to measure the improvement of the entire cluster structure after the splitting
process. However, the BIC is not always useful in some cases.

Figure 5 shows an example, where the center point is the root centroid and the relatively
small points are its children centroids. We can see that the BIC score does not improve,
although this cluster structure should be partitioned further into two and four sub-clusters.
From our preliminary experiments, we observe that the BIC is not useful fornull-centroids.
The root centroid is considered to be the null-centroid if it has these characteristics: very
few members belong to the root centroid compared with its children centroids, and the root
centroid often lies in the space with no data points in the vicinity. Therefore, we should
definitely split the cluster without using the BIC. In our current work, we just measure the
Euclidean distances among the data points and the candidate centroids to determine the null-
centroid. Figure 6 shows the clustering result after partitioning further.

These above refinement strategies are combined in each splitting process of the PDDP run.
The computational time is reasonable, since the initial centroids from the PDDP algorithm
are better than random ones. It performs a moderate number of2-means iterations. Figure 7



Input: A data set representing by a matrixM = (x1, . . . , xn).

1. Initialize a binary treeT with a single root node, and setk = 0.

2. Loop while the global cluster structure improves ork < kmax.

2.1 Select the leaf nodeC with the largest scatter value.

2.2 Compute the centroidµC and the principal direction vectoruC.

2.3 Forxi ∈ C, assignxi to left childL or right childR according to Equation 1 and 2.

2.4 If C has the null-centroid orBIC(2-means(L,R)) > BIC(C) then
SetT = T ∪ {L,R} andk = k + 1.

Output: A binary treeT forming a partitioning of the entire data set.

Figure 7: The outline of therPDDP algorithm for unsupervised clustering.

shows the outline of therPDDP algorithm.

4 Experimental Results

To study the performance of therPDDP algorithm in unsupervised clustering, we performed
empirical experiments on both synthetic and real data sets. On the data set given class labels,
we could compare the clustering results against the true class labels directly. We measured the
clustering results on the data set that has no class labels using the distortion (or the sum-of-
squared-error criterion [5]), which smaller distortion values indicate better clustering results.

4.1 Data Sets

The synthetic data consist of two data sets used in [7]. The first data set,2D2K, contains 500
points of 2 Gaussian centroids in 2 dimensions. The second data set,8D5K, contains 1000
points from 5 multivariate Gaussian distributions (200 points each) in 8 dimensions. The data
sets are available atwww.lans.ece.utexas.edu/˜strehl/data.html.

The Iris data set is the standard benchmark in the pattern recognition literature [1]. It con-
sists of 150 instances of three types of flowers having four features: sepal length, sepal width,
petal length, and petal width. One of the clusters is linearly separable from the other two. The
remaining two clusters have significantly overlapping. Since each element is categorized, we
can compare clustering results with the true class labels.

4.2 Results

We compare therPDDP algorithm with the original PDDP algorithm. However, using the
change in the overall scatter values as the stopping criterion in the original PDDP algorithm
does not seem to converge to the true number of clusters. We also apply the BIC to be the
stopping criterion for the PDDP algorithm.

Figure 8 shows the clustering result using therPDDP algorithm on the2D2K data set.
Since the structure of this data set is simple, both therPDDP and PDDP algorithms generate
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Figure 8: The clustering result of therPDDP algorithm on the2D2K data set.
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Figure 9: Distortion values of the PDDP andrPDDP
algorithms on the8d5k data set.

2 3 4 5 6 7 8 9 10
1000

2000

3000

4000

5000

6000

7000

Number of clusters

BI
C

8D5K

PDDP
rPDDP

Figure 10: BIC scores of the PDDP andrPDDP algo-
rithms on the8d5k data set.

slightly different results. While the PDDP algorithm achieves 21.87 distortion and 1685.86
BIC, therPDDP algorithm reaches 19.04 distortion and 1826.26 BIC. Both algorithms con-
verge, resulting only 2 clusters that are equivalent to the actual number of clusters in this data
set.

Figure 9 and 10 demonstrate the distortion values and the BIC scores on the8D5K data
set. Interestingly, on this data set, both algorithms using the BIC can efficiently estimate the
true number of clusters. While the PDDP algorithm generates 6 clusters, therPDDP algo-
rithm converges, producing 5 clusters that are the true number of clusters. We can see from
the curve that the BIC score of therPDDP algorithm does not improve after 5 clusters. Based
on the distortion values, we can observe that therPDDP algorithm constantly outperforms
the PDDP algorithm.

Table 1 shows the clustering result using therPDDP algorithm on the Iris data set. The
PDDP algorithm also generates the same result. There are 8 wrongly clustered elements. On
this data set, both algorithms converge, producing 4 output clusters.

5 Conclusion and Future Work

We have presented refinement strategies for the PDDP algorithm. When the principal direc-
tion vectors are not informative due to some data distributions, the PDDP algorithm can give



cluster setosa versicolor virginica

1 50 0 0
2 0 43 1
3 0 2 30
4 0 5 19

Table 1: The clustering result of therPDDP algorithm on the Iris data set.

poor clustering results. OurrPDDP algorithm solves this problem by running the2-means al-
gorithm locally to adjust the centroids and their members. We also apply the BIC to estimate
the true number of clusters. Preliminary results on different data sets are very promising.

In future work, we intend to conduct more extensive experiments on other benchmark
data sets. We are also interested in using the binary tree structure generated by therPDDP
algorithm as a simple taxonomic ontology. We believe that it can be valuable for many other
tasks, such as semi-automatic ontology construction.
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