Automatic Corpus-based Thai Word Extraction with the C4.5 Learning Algorithm

Virach Sornlertlamvanich, Tanapong Potipiti, and Thatsanee Charoenporn
National Electronics and Computer Technology Center (NECTEC),
THAILAND

Introduction (1)

- Problems of Thai Word Identification
 - No word boundary -> Thais have difficulties in defining words.

Example:

...notwithstandingiampresenting...

Notwithstanding, Not + with + standing,

Not + withstanding

- Thai processing relies on human created dictionaries which have several limitations.
 - inconsistency
 - coverage

Introduction (2)

- Words cannot be defined clearly and consistently:
 - problems in

Machine Translation, Information Retrieval

Speech Synthesis

Speech Recognition

etc.

Our Approach (1)

- Corpus-Based Word Extraction
 - Unlabelled Corpus-Based
 - Automatic
 - Clear and Computable

Our Approach(2)

- Building a suffix array of 3-to-30-character substrings from the corpus
- Word/Non-word string disambiguation
- Applying the C4.5 machine learning
- The attributes applied to the disambiguation are:

Attributes(1): Left and Right Mutual Information

$$Lm(xyz) = \frac{p(xyz)}{p(x)p(yz)} \qquad Rm(xyz) = \frac{p(xyz)}{p(xy)p(z)}$$

$$Rm(xyz) = \frac{p(xyz)}{p(xy)p(z)}$$

where

x is the leftmost character of string xyz y is the middle substring of xyz z is the rightmost character of string xyz p() is the probability function.

High mutual information implies that xyz co-occurs more than expected by chance. If xyz is a word, its Im and Rm must be high. ... Efunction... and ... Function...

Attributes(2): Left and Right Entropy

$$Le(y) = -\sum_{\text{all } x \in A} p(xy \mid y) . log_2 p(xy \mid y)$$

$$Re(y) = -\sum_{\text{all } z \in A} p(yz \mid y) . log_2 p(yz \mid y)$$

$$\text{all } z \in A$$

where

x is the leftmost character of string xyz y is the middle substring of xyz z is the rightmost character of string xyz p() is the probability function.

Entropy shows the variety of characters before and after a word. If xyz is a word, its left and right entropy must be high. Example: ...? function....? unction...

Attributes(3): Frequency, Length Functional Words

Frequency

Words tend to be used more often than non-word string sequences.

Length

Short strings are likely to happen by chance. The long and short strings should be treated differently.

Functional Words

Functional words are used mostly in phrases. They are useful to disambiguate words and phrases.

Func(s) = 1 if s contains functional words.

= 0 if otherwise.

Attributes(4): First Two and Last Two Characters

■ Frequency of the first-two characters of the considered string which appears in the first-two characters of words in the dictionary

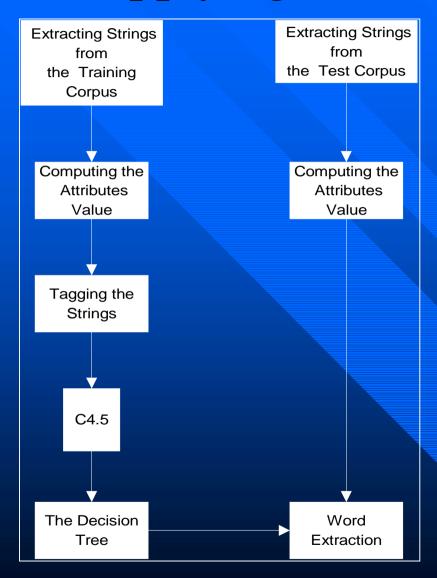
high frequency -> the beginning of the considered string conforms to the Thai spelling system.

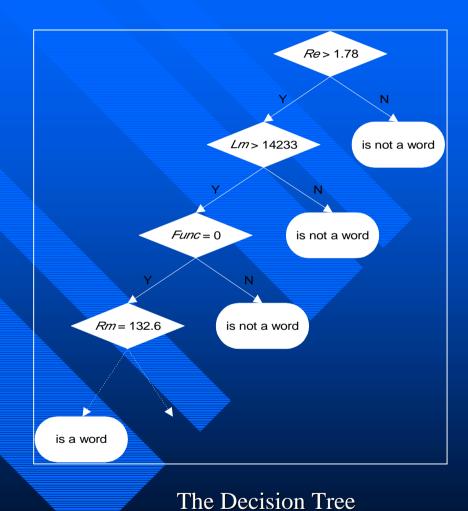
Ex.

<u>Function</u>: how likely fu can be the beginning of word.

This idea can be also applied to the last-two characters.

Applying C4.5 to Word Extraction





Experimental Results (1)

The Precision of Word Extraction

	No. of strings	No. of	No. of non-
	extracted by the	words	word strings
	decision tree	extracted	extracted
Training	1882	1643	239
Set	(100%)	(87.3%)	(12.7%)
Test Set	1815	1526	289
	(100%)	(84.1%)	(15.9%)

The Recall of Word Extraction

_	No. of words	No. of words	No. of words
	that has more	extracted by	in
	than 2	the decision	corpus that
	occurrences in	tree	are found
	corpus		RID
Training	2933	1643	1833
Set	(100%)	(56.0%)	(62.5%)
Test Set	2720	1526	1580
	(100%)	(56.1%)	(58.1%)

Remark: These precision and recall are measured against 30,000 strings that occur more than 2 times in the corpus and conform to some simple Thai spelling rules.

Experimental Results (2)

Word Extraction VS. a Dictionary

	No. of words	No. of words	No. of words
	extracted by	extracted by	extracted by
	the decision	the decision	the decision
	tree	tree which is	tree which is
		in RID	not in RID
Training	1643	1082	561
Set	(100.0%)	(65.9%)	(34.1%)
Test Set	1526	1046	480
	(100.1%)	(68.5%)	(31.5%)

The Relationship of Accuracy, Frequency and Length

- Both precision and recall are getting higher as the length and frequency of strings increase.
- The new created words have tendency to be long.

 Our extraction yields a high accuracy in extracting temporal words.

Conclusion

- C4.5 has been applied to word extraction, using attributes: mutual information, entropy, frequency, length, functional words, and the first two and last two characters.
- Our approach yields 85% in precision an 56% in recall measure.
- Our approach is promising for building a corpus-based dictionary for non-word boundary languages.

Thank You for Your Attention